Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Plant Cell Rep ; 43(4): 88, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461436

RESUMO

KEY MESSAGE: The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Sementes/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
PLoS One ; 19(3): e0299268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427676

RESUMO

Reducing enteric methane (one greenhouse gas) emissions from beef cattle not only can be beneficial in reducing global warming, but also improve efficiency of nutrient utilization in the production system. However, direct measurement of enteric methane emissions on individual cattle is difficult and expensive. The objective of this study was to detect plasma metabolites that are associated with enteric methane emissions in beef cattle. Average enteric methane emissions (CH4) per day (AVG_DAILYCH4) for each individual cattle were measured using the GreenFeed emission monitoring (GEM) unit system, and beef cattle with divergent AVG_DAILYCH4 from Angus (n = 10 for the low CH4 group and 9 for the high CH4 group), Charolais (n = 10 for low and 10 for = high), and Kinsella Composite (n = 10 for low and 10 for high) populations were used for plasma metabolite quantification and metabolite-CH4 association analyses. Blood samples of these cattle were collected near the end of the GEM system tests and a high performance four-channel chemical isotope labeling (CIL) liquid chromatography (LC) mass spectrometer (MS) method was applied to identify and quantify concentrations of metabolites. The four-channel CIL LC-MS method detected 4235 metabolites, of which 1105 were found to be significantly associated with AVG_DAILYCH4 by a t-test, while 1305 were significantly associated with AVG_DAILYCH4 by a regression analysis at p<0.05. Both the results of the t-test and regression analysis revealed that metabolites that were associated with enteric methane emissions in beef cattle were largely breed-specific whereas 4.29% to 6.39% CH4 associated metabolites were common across the three breed populations and 11.07% to 19.08% were common between two breed populations. Pathway analyses of the CH4 associated metabolites identified top enriched molecular processes for each breed population, including arginine and proline metabolism, arginine biosynthesis, butanoate metabolism, and glutathione metabolism for Angus; beta-alanine metabolism, pyruvate metabolism, glycolysis / gluconeogenesis, and citrate cycle (TCA cycle) for Charolais; phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, and arginine and proline metabolism for Kinsella Composite. The detected CH4 associated metabolites and enriched molecular processes will help understand biological mechanisms of enteric methane emissions in beef cattle. The detected CH4 associated plasma metabolites will also provide valuable resources to further characterize the metabolites and verify their utility as biomarkers for selection of cattle with reduced methane emissions.


Assuntos
Dieta , Metano , Bovinos , Animais , Dieta/veterinária , Metano/metabolismo , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Arginina , Fenilalanina , Prolina , Ração Animal/análise
3.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458635

RESUMO

BACKGROUND: Programmed death 1 (PD-1) inhibitor demonstrated durable antitumor activity in advanced esophageal squamous cell carcinoma (ESCC), but the clinical benefit of perioperative immunotherapy in ESCC remains unclear. This study evaluated the efficacy and safety of neoadjuvant chemoradiotherapy (nCRT) combined with the PD-1 inhibitor toripalimab in patients with resectable ESCC. METHODS: From July 2020 to July 2022, 21 patients with histopathologically confirmed thoracic ESCC and clinical staged as cT1-4aN1-2M0/cT3-4aN0M0 were enrolled. Eligible patients received radiotherapy (23 fractions of 1.8 Gy, 5 fractions a week) with concurrent chemotherapy of paclitaxel/cisplatin (paclitaxel 45 mg/m2 and cisplatin 25 mg/m2) on days 1, 8, 15, 22, 29 and two cycles of toripalimab 240 mg every 3 weeks after nCRT for neoadjuvant therapy before surgery, four cycles of toripalimab 240 mg every 3 weeks for adjuvant therapy after surgery. The primary endpoint was the major pathological response (MPR) rate. The secondary endpoints were safety and survival outcomes. RESULTS: A total of 21 patients were included, of whom 20 patients underwent surgery, 1 patient refused surgery and another patient was confirmed adenocarcinoma after surgery. The MPR and pathological complete response (pCR) rates were 78.9% (15/19) and 47.4% (9/19) for surgery ESCC patients. 21 patients (100.0%) had any-grade treatment-related adverse events, with the most common being lymphopenia (100.0%), leukopenia (85.7%), neutropenia (52.4%). 14 patients (66.7%) had adverse events of grade 3 with the most common being lymphopenia (66.7%). The maximum standardized uptake value and total lesion glycolysis of positron emission tomography/CT after neoadjuvant therapy well predicted the pathological response. The peripheral CD4+%, CD3+HLA-DR+/CD3+%, CD8+HLA-DR+/CD8+%, and IL-6 were significant differences between pCR and non-pCR groups at different times during neoadjuvant therapy. Three patients had tumor relapse and patients with MPR have longer disease-free survival than non-MPR patients. CONCLUSIONS: nCRT combined with perioperative toripalimab is effective and safe for locally advanced resectable ESCC. Long-term survival outcomes remain to be determined. TRIAL REGISTRATION NUMBER: NCT04437212.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linfopenia , Trombocitopenia , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Terapia Neoadjuvante , Carcinoma de Células Escamosas/tratamento farmacológico , Resultado do Tratamento , Recidiva Local de Neoplasia , Paclitaxel , Antígenos HLA-DR , Células Epiteliais/patologia
4.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37850874

RESUMO

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligases/metabolismo , Tamanho do Órgão , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Helicobacter ; 29(1): e13029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37823482

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) poses serious threats to human health. TikTok (Douyin in Chinese), a major social media platform focused on sharing short videos, has demonstrated great potential in spreading health information, including information related to H. pylori infection. This study aims to evaluate the content and quality of the information shared in TikTok videos about H. pylori infection in mainland China. METHODS: We collected a sample of 116 videos in Chinese related to H. pylori infection from TikTok. Video contents were evaluated by the coding schema proposed by Goobie et al., and the Hexagonal Radar Schema was used to intuitively display the spotlight and weight of each aspect of the videos. The DISCERN questionnaire was used to evaluate the quality of the videos. RESULTS: We identified two major sources of videos related to H. pylori: individual users (n = 89) and organizational users (n = 27). Regarding content, the Hexagonal Radar Charts showed that more than 35% of the videos delivered moderate to high quality content (>1 point) in terms of definition, symptoms and management of the disease, whereas risk factors, evaluation and outcomes of the disease were less discussed. The DISCERN classification data showed that 0.9% of the videos were "very poor," 5.2% "poor," 68.7% "fair," 20.0% "good," and only 5.2% "excellent". Regarding total DISCERN scores, videos published by nonprofit organizations had the highest scores, followed by videos uploaded by health professionals. CONCLUSION: Although the overall quality of TikTok videos related to H. pylori infection was medium, users should be careful when obtaining information related to H. pylori infection on TikTok and opt for videos uploaded by nonprofit organizations and health professionals.


Assuntos
Informação de Saúde ao Consumidor , Infecções por Helicobacter , Mídias Sociais , Humanos , Estudos Transversais , Helicobacter pylori
6.
Synth Syst Biotechnol ; 8(4): 708-715, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053584

RESUMO

By directly converting solar energy and carbon dioxide into biobased products, cyanobacteria are promising chassis for photosynthetic biosynthesis. To make cyanobacterial photosynthetic biosynthesis technology economically feasible on industrial scales, exploring and engineering cyanobacterial chassis and cell factories with fast growth rates and carbon fixation activities facing environmental stresses are of great significance. To simplify and accelerate the screening for fast-growing cyanobacteria strains, a method called Individual Cyanobacteria Vitality Tests and Screening (iCyanVS) was established. We show that the 13C incorporation ratio of carotenoids can be used to measure differences in cell growth and carbon fixation rates in individual cyanobacterial cells of distinct genotypes that differ in growth rates in bulk cultivations, thus greatly accelerating the process screening for fastest-growing cells. The feasibility of this approach is further demonstrated by phenotypically and then genotypically identifying individual cyanobacterial cells with higher salt tolerance from an artificial mutant library via Raman-activated gravity-driven encapsulation and sequencing. Therefore, this method should find broad applications in growth rate or carbon intake rate based screening of cyanobacteria and other photosynthetic cell factories.

7.
Front Bioeng Biotechnol ; 11: 1263634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701496

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2023.1233856.].

8.
Front Bioeng Biotechnol ; 11: 1233856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456715

RESUMO

Single-cell genomic whole genome amplification (WGA) is a crucial step in single-cell sequencing, yet its low amplification efficiency, incomplete and uneven genome amplification still hinder the throughput and efficiency of single-cell sequencing workflows. Here we introduce a process called Improved Single-cell Genome Amplification (iSGA), in which the whole single-cell sequencing cycle is completed in a high-efficient and high-coverage manner, through phi29 DNA polymerase engineering and process engineering. By establishing a disulfide bond of F137C-A377C, the amplification ability of the enzyme was improved to that of single-cell. By further protein engineering and process engineering, a supreme enzyme named HotJa Phi29 DNA Polymerase was developed and showed significantly better coverage (99.75%) at a higher temperature (40°C). High single-cell genome amplification ability and high coverage (93.59%) were also achieved for commercial probiotic samples. iSGA is more efficient and robust than the wild-type phi29 DNA polymerase, and it is 2.03-fold more efficient and 10.89-fold cheaper than the commercial Thermo Scientific EquiPhi29 DNA Polymerase. These advantages promise its broad applications in large-scale single-cell sequencing.

9.
J Med Virol ; 95(7): e28915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417384

RESUMO

Infection of the central nervous system caused by enterovirus 71 (EV71) remains the main cause of death in hand-foot-and-mouth disease. However, the mechanism responsible for how EV71 breaks through the blood-brain barrier to infect brain cells has yet to be elucidated. By performing a high-throughput small interfering RNA (siRNA) screening and validation, we found that the infection of human brain microvascular endothelial cells (HBMECs) by EV71 was independent of the endocytosis pathways mediated by caveolin, clathrin, and macropinocytosis but dependent on ADP-ribosylation factor 6 (ARF6), a small guanosinetriphosphate (GTP)-binding protein of the Ras superfamily. The specific siRNA targeting ARF6 markedly inhibited HBMECs susceptibility to EV71. EV71 infectivity was inhibited by NAV-2729, a specific inhibitor of ARF6, in a dose-dependent manner. The subcellular analysis demonstrated the co-localization of the endocytosed EV71 and ARF6, while knockdown of ARF6 with siRNA remarkably influenced EV71 endocytosis. By immunoprecipitation assays, we found a direct interaction of ARF6 with EV71 viral protein. Furthermore, ARF1, another small GTP-binding protein, was also found to participate in ARF6-mediated EV71 endocytosis. Murine experiments demonstrated that NAV-2729 significantly alleviated mortality caused by EV71 infection. Our study revealed a new pathway by which EV71 enters the HBMECs and provides new targets for drug development.


Assuntos
Fator 6 de Ribosilação do ADP , Enterovirus Humano A , Infecções por Enterovirus , Animais , Humanos , Camundongos , Fator 6 de Ribosilação do ADP/metabolismo , Encéfalo/metabolismo , Células Endoteliais , Enterovirus Humano A/genética , RNA Interferente Pequeno/genética
10.
Nat Commun ; 14(1): 4384, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474494

RESUMO

The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.


Assuntos
Racemases e Epimerases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Racemases e Epimerases/metabolismo , Glicosilação , Acetilglucosamina/metabolismo , Poaceae/metabolismo , Parede Celular/metabolismo , Difosfato de Uridina/metabolismo
11.
iScience ; 26(6): 106988, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378313

RESUMO

Pancreatic stellate cells (PSCs) are suggested to play an important role in the development of pancreas and islet fibrosis. However, the precise contributions and solid in vivo evidence of PSCs to the fibrogenesis remain to be elucidated. Here, we developed a novel fate-tracing strategy for PSCs by vitamin A administration in Lrat-cre; Rosa26-tdTomato transgenic mouse. The results showed that stellate cells give rise to 65.7% of myofibroblasts in cerulein-induced pancreatic exocrine fibrosis. In addition, stellate cells in islets increase and contribute partly to myofibroblasts pool in streptozocin-induced acute or chronic islet injury and fibrosis. Furthermore, we substantiated the functional contribution of PSCs to fibrogenesis of pancreatic exocrine and islet in PSCs ablated mice. We also found stellate cells' genetic ablation can improve pancreatic exocrine but not islet fibrosis. Together, our data indicates that stellate cells are vital/partial contributors to myofibroblasts in pancreatic exocrine/islet fibrosis.

12.
FASEB J ; 37(3): e22822, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809666

RESUMO

Islet fibrosis is associated with the disruption of islet structure and contributes to ß-cell dysfunction, playing an essential role in the pathogenesis of type 2 diabetes. Physical exercise has been shown to attenuate fibrosis in various organs; however, the effect of exercise on islet fibrosis has not been defined. Male Sprague-Dawley rats were divided into four groups: normal diet sedentary [N-Sed], normal diet + exercise [N-Ex], high-fat diet sedentary [H-Sed], and high-fat diet + exercise [H-Ex]. After 60 weeks of exercise, 4452 islets from Masson-stained slides were analyzed. Exercise led to a 68% and 45% reduction in islet fibrosis in the normal and high-fat diet groups and was correlated with a lower serum blood glucose. Fibrotic islets were characterized by irregular shapes and substantial loss of ß-cell mass, which were significantly reduced in the exercise groups. Remarkably, the islets from exercised rats at week 60 were morphologically comparable to those of sedentary rats at 26 weeks. In addition, the protein and RNA levels of collagen and fibronectin, and the protein levels of hydroxyproline in the islets were also attenuated by exercise. This was accompanied by a significant reduction in inflammatory markers in the circulation Interleukin-1 beta (IL-1ß)] and pancreas [IL-1ß, Tumor Necrosis Factor-alpha, Transforming Growth Factor-ß, and Phosphorylated Nuclear Factor Kappa-B p65 subunit], lower macrophage infiltration, and stellate cell activation in the islets of exercised rats. In conclusion, we have demonstrated that long-term exercise preserves pancreatic islet structure and ß-cell mass through anti-inflammatory and anti-fibrotic actions, suggesting additional rationales for the success of exercise training in the prevention and treatment of type 2 diabetes that should be further explored.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Masculino , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Ratos Sprague-Dawley , Pâncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Fibrose , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo
13.
Front Immunol ; 13: 1041126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451825

RESUMO

Purpose: Neoadjuvant chemoradiotherapy (nCRT) is a standard treatment option for patients with stage III oesophageal cancer. Approximately 30% of oesophageal cancer patients will have a pathological complete response (pCR) after nCRT. However, available clinical methods cannot accurately predict pCR for patients. We aimed to find more indicators that could be used to predict the pathological response to nCRT. Method: A total of 84 patients with stage III oesophageal squamous cell cancer were enrolled in this study. Ten patients failed to have surgery as a result of progressive disease (PD). Among the patients who underwent surgery, 32 patients had a pathologic complete response (pCR), whereas 42 patients showed no or partial response (npCR) after nCRT. Routine blood test results and lymphocyte subset assessments before and after nCRT were retrospectively analysed. Univariate and multivariate analyses were used to identify independent predictors of the clinical curative effect of nCRT. Eventually, nomograms were established for predicting the PD and pCR rates. Results: The numbers of lymphocytes, B lymphocytes, T lymphocytes, Th lymphocytes, Ts lymphocytes, and NK cells and the percentages of B lymphocytes and NK cells were decreased significantly after nCRT (P < 0.0001), whereas the percentages of T lymphocytes and Ts lymphocytes increased (P < 0.0001). Univariate analysis showed that age, the length of the lesion, the level of haemoglobin before nCRT, and the amount of change in haemoglobin were related to PD, and the percentage of NK cells after nCRT was related to pCR. Multivariate logistic analysis demonstrated that the length of the lesion, the neutrophil-to-lymphocyte ratio (NLR) before nCRT, and the amount of change in haemoglobin were independent predictors of PD, whereas the percentage of NK cells after nCRT was an independent predictor of pCR. Conclusion: Lymphocyte subsets changed dramatically during nCRT, and these changes together with baseline and posttreatment lymphocyte subsets have predictive value in determining the response to nCRT for oesophageal cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Terapia Neoadjuvante , Estudos Retrospectivos , Carcinoma de Células Escamosas do Esôfago/terapia , Subpopulações de Linfócitos , Neoplasias Esofágicas/terapia , Células Matadoras Naturais , Células Epiteliais
14.
Cells ; 11(21)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359803

RESUMO

The role of hypoxia-regulated long non-coding RNA (lncRNA) in the development of head and neck squamous cell carcinoma (HNSCC) remains to be elucidated. In the current study, we initially screened hypoxia-regulated lncRNA in HNSCC cells by RNA-seq, before focusing on the rarely annotated lncRNA USP2 antisense RNA 1 (USP2-AS1). We determined that USP2-AS1 is a direct target of HIF1α and is remarkably elevated in HNSCC compared with matched normal tissues. Patients with a higher level of USP2-AS1 suffered a poor prognosis. Next, loss- and gain-of-function assays revealed that USP2-AS1 promoted cell proliferation and invasion in vitro and in vivo. Mechanically, RNA pulldown and LC-MS/MS demonstrated that the E3 ligase DDB1- and CUL4-associated factor 13 (DCAF13) is one of the binding partners to USP2-AS1 in HNSCC cells. In addition, we assumed that USP2-AS1 regulates the activity of DCAF13 by targeting its substrate ATR. Moreover, the knockdown of DCAF13 restored the elevated cell proliferation and growth levels achieved by USP2-AS1 overexpression. Altogether, we found that lncRNA USP2-AS1 functions as a HIF1α-regulated oncogenic lncRNA and promotes HNSCC cell proliferation and growth by interacting and modulating the activity of DCAF13.


Assuntos
Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Cromatografia Líquida , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Hipóxia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Espectrometria de Massas em Tandem , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , RNA Antissenso
15.
Front Bioeng Biotechnol ; 10: 1029203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338133

RESUMO

Xylitol production from lignocellulose hydrolysate is a sustainable and environment-friendly process. In this study, a systematic process of converting corncob waste into xylitol is described. First, the corncobs are hydrolyzed with acid to a hydrolysate. Second, Kluyveromyces marxianus YZJQ016 derived from K. marxianus YZJ074, constructed by overexpressing ScGAL2-N376F from Saccharomyces cerevisiae, CtXYL1 from Candida tropicalis, and KmZWF1 from K. marxianus, produces xylitol from the hydrolysate. A total of ten xylose reductase genes were evaluated, and CtXYL1 proved best by showing the highest catalytic activity under the control of the KmGAPDH promoter. A 5 L fermenter at 42°C produced 105.22 g/L xylitol using K. marxianus YZJQ016-the highest production reported to date from corncob hydrolysate. Finally, for crystallization of the xylitol, the best conditions were 50% (v/v) methanol as an antisolvent, at 25°C, with purity and yield of 99%-100% and 74%, respectively-the highest yield reported to date.

16.
Front Genet ; 13: 988433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212135

RESUMO

Background: Single nucleotide polymorphisms (SNPs) of essential enzymes for alcohol metabolism ADH1B, ADH1C, and ALDH2 are commonly regarded as genetic biomarkers for esophageal squamous cell carcinoma (ESCC) susceptibility. However, there have not been any reports on relations between SNPs of these genes and the prognosis of postoperative radiotherapy in ESCC. The current study aimed to understand the associations between gene variants of alcohol metabolism and adjuvant radiotherapy's prognosis in ESCC. Methods: This study retrospectively analyzed 110 ESCC patients from our institution who received adjuvant radiotherapy after surgery. The SNPs of ADH1B rs1229984, ADH1C rs1789924, and ALDH2 rs671 were detected by Sanger sequencing using formalin-fixed paraffin-embedded tumor samples. A nomogram was drawn based on prognostic factors associated with overall survival (OS). Results: ADH1C rs1789924 (C>T) was associated with poor DFS and OS in ESCC patients undergoing adjuvant radiotherapy. Multivariate analysis showed that ADH1C rs1789924 (C>T) was one of the independent prognosis factors of DFS and OS. However, the genotypes of ADH1B SNP rs1229984 and ALDH2 rs671 were not associated with differences in the PFS and OS of these patients. Compared with the AJCC staging system, the nomogram containing the ADH1C genotype can more effectively and accurately predict the survival time of ESCC after surgery and adjuvant radiotherapy. Conclusion: ADH1C rs1789924 might be a prognostic genetic biomarker for ESCC patients undergoing surgery and postoperative radiotherapy.

17.
Front Immunol ; 13: 1001173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119057

RESUMO

Background: Radiotherapy plays an important effect on the standard therapy of esophageal squamous cell carcinoma (ESCC). However, the efficacy of the therapy is limited and a few patients do not achieve satisfactory treatment results due to the existence of radiation resistance. Therefore, it is necessary to identify the potential predictive biomarkers and treatment targets for ESCC. Methods: We performed the whole-exome sequencing to determine the germline and somatic mutations in ESCC. Functional enrichment and pathway-based protein-protein interaction analyses were used to ascertain potential regulatory networks. Cell survival and cell death after treatment with radiotherapy were determined by CCK-8 and LDH release assays in ESCC cells. The correlations of NOTCH1 and tumor immune infiltration were also analyzed in ESCC. Results: Our results showed that 344 somatic and 65 germline differentially mutated genes were detected to be radiosensitivity-related loci. The tumor mutational burdens (TMB) or microsatellite instability (MSI) were not significantly correlated with the response to radiotherapy in ESCC patients. Pathway-based protein-protein interaction analyses implied several hub genes with most nodes (such as PIK3CA, NOTCH1, STAT3 and KDR). The in vitro studies showed that the knockdown of NOTCH1 inhibited cell survival and rendered more cell death after the treatment with radiotherapy in ESCC cells, while NOTCH1 overexpression had the opposite effects. Moreover, NOTCH1, frequently up-regulated in ESCC, was negatively correlated with activated B cell and immature dendritic cell in ESCC. High expression of NOTCH1 was accompanied with the low levels of some immunotherapy-related cells, including CD8(+) T cells and NK cells. Conclusions: These results indicate the differences of the germline mutations and somatic mutations between the radiosensitive and radioresistence groups in ESCC and imply that NOTCH1 plays important roles in regulating the radiosensitivity of ESCC. The findings might provide the biomarkers and potential treatment targets for improving the sensitivity to radiotherapy in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linfócitos T CD8-Positivos/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Humanos , Mutação , Sincalida/genética
18.
Heliyon ; 8(8): e10117, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35965987

RESUMO

College students in China are particularly vulnerable to worry. In the meanwhile, the COVID-19 pandemic might worsen anxiety symptoms. However, due to the inconsistency of many studies regarding anxiety symptoms, it has proven challenging to provide accurate psychiatric health treatments to undergraduates. Therefore, in order to determine the prevalence of anxiety among Chinese university students during the COVID-19 epidemic, this study will undertake a systematic review and meta-analysis. English databases (i.e Embase (Ovid), APA PsycInfo, Medline, Pubmed, Cochrane Library) were utilized to identify papers that provide information on the incidence of anxiety among Chinese college students during the pandemic. Two authors evaluated the qualifications of relevant studies, assessed the risk of bias (RoB), and retrieved data. RoB was evaluated using the cross-sectional study quality evaluation criteria from the American Agency for HealthCare Quality and Research (AHRQ). Three hundred seventy-three records were retrieved. Twenty-five studies were eventually included, involving 1,003,743 Chinese college students. The findings of the study identified that the pooled prevalence of anxiety symptoms was 25.0% (95% CI: 21%-29%, P < 0.001), and those among medical-related professionals were lower than those of the general population (22.1% vs. 25%, P < 0.001). In addition, the prevalence of studies with more female respondents was higher than those with fewer female respondents (26.4% vs. 8%). In the later phases of the COVID-19 pandemic compared to the early stages, anxiety prevalence is higher (29.1% vs. 17.2%). Finally, using meta-regression to explore the source of heterogeneity, this study found that the most potential source was whether the graduate students or otherwise. This meta-analysis revealed that during the COVID-19 pandemic, a quarter of Chinese college students had anxiety symptoms. Therefore, it is necessary to provide continuous psychological assessment and treatment services for college students.

19.
Metabolites ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629931

RESUMO

Vinegar is used as an acidic condiment and preservative worldwide. In Asia, various black vinegars are made from different combinations of grains, such as Sichuan bran vinegar (SBV), Shanxi aged vinegar (SAV), Zhenjiang aromatic vinegar (ZAV), and Fujian Monascus vinegar (FMV) in China and Ehime black vinegar in Japan (JBV). Understanding the chemical compositions of different vinegars can provide information about nutritional values and the quality of the taste. This study investigated the vinegar metabolome using a combination of GC-MS, conventional LC-MS, and chemical isotope labeling LC-MS. Different types of vinegar contained different metabolites and concentrations. Amino acids and organic acids were found to be the main components. Tetrahydroharman-3-carboxylic acid and harmalan were identified first in vinegar. Various diketopiperazines and linear dipeptides contributing to different taste effects were also detected first in vinegar. Dipeptides, 3-phenyllactic acid, and tyrosine were found to be potential metabolic markers for differentiating vinegars. The differently expressed pathway between Chinese and Japanese vinegar was tryptophan metabolism, while the main difference within Chinese vinegars was aminoacyl-tRNA biosynthesis metabolism. These results not only give insights into the metabolites in famous types of cereal vinegar but also provide valuable knowledge for making vinegar with desirable health characteristics.

20.
RSC Adv ; 12(20): 12463-12470, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480351

RESUMO

In this study, a series of polysiloxane grafted with thermotropic fluorinated mesogens (TSCPFLCP) is designed and synthesized. The TSCPFLCP exhibits a typical smectic liquid crystal phase, and shows a high thermal decomposition temperature at 335.6 °C. After blending with LLDPE, the balance melt torque of LLDPE/TSCPFLCP is decreased by 42% at 0.5 wt% TSCPFLCP, and the corresponding power law index is increased to 0.45. The flowing activation energy of the optimized LLDPE/TSCPFLCP blend is lower than that of pure LLDPE at the same shear rate, indicating that TSCPFLCP reduced the sensitivity of the apparent melt viscosity of LLDPE to both shear rate and temperature. This contributes to the broadening of the LLDPE processing window. On the other hand, TSCPFLCP is also found beneficial in ameliorating melt fracture during LLDPE extrusion. Furthermore, the mechanical properties of LLDPE/TSCPFLCP blends, such as tensile strength, elastic modulus and elongation at break, are also enhanced significantly at 0.5 wt% TSCPFLCP. Altogether, TSCPFLCP has been proven an effective processing aid to improve the processability and toughness of LLDPE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...